-
The predictive value of resting heart rate in identifying undiagnosed diabetes in Korean adults: Korea National Health and Nutrition Examination Survey
-
Dong-Hyuk Park, Wonhee Cho, Yong-Ho Lee, Sun Ha Jee, Justin Y. Jeon
-
Epidemiol Health. 2022;44:e2022009. Published online January 3, 2022
-
DOI: https://doi.org/10.4178/epih.e2022009
-
-
12,123
View
-
413
Download
-
1
Web of Science
-
2
Crossref
-
Abstract
Summary
PDFSupplementary Material
-
Abstract
OBJECTIVES The purpose of this study was (1) to examine whether the addition of resting heart rate (RHR) to the existing undiagnosed diabetes mellitus (UnDM) prediction model would improve predictability, and (2) to develop and validate UnDM prediction models by using only easily assessable variables such as gender, RHR, age, and waist circumference (WC).
METHODS Korea National Health and Nutrition Examination Survey (KNHANES) 2010, 2012, 2014, 2016 data were used to develop the model (model building set, n=19,675), while the data from 2011, 2013, 2015, 2017 were used to validate the model (validation set, n=19,917). UnDM was defined as a fasting glucose level ≥126 mg/dL or glycated hemoglobin ≥6.5%; however, doctors have not diagnosed it. Statistical package for the social sciences logistic regression analysis was used to determine the predictors of UnDM.
RESULTS RHR, age, and WC were associated with UnDM. When RHR was added to the existing model, sensitivity was reduced (86 vs. 73%), specificity was increased (49 vs. 65%), and a higher Youden index (35 vs. 38) was expressed. When only gender, RHR, age, and WC were used in the model, a sensitivity, specificity, and Youden index of 70%, 67%, and 37, respectively, were observed.
CONCLUSIONS Adding RHR to the existing UnDM prediction model improved specificity and the Youden index. Furthermore, when the prediction model only used gender, RHR, age, and WC, the outcomes were not inferior to those of the existing prediction model.
-
Summary
Korean summary
당뇨병 미인지 또는 미진단은 적절한 치료 시작 시기를 늦추고 당뇨병 합병증 발생의 위험을 높이기 때문에, 각국은 당뇨병 예측 모형을 개발하여 당뇨병을 조기에 예측하고, 치료 시기를 앞당기기 위해 노력하고 있다. 본 연구는 기존의 한국인 당뇨병 예측 모형에 안정시심박수를 추가 변수로 포함시켜, 예측 모형의 성능이 일부개선되는 것을 확인하였고, 더 나아가 나이, 허리 둘레, 그리고 안정시심박수를 포함하여 예측 모형을 개발하고, 그 성능을 확인하였다. 본 연구에서는 간단하게 측정이 가능한 허리 둘레와 안정시심박수 그리고 나이만 포함한 예측 모형이 기존의 예측 모형과 비교해 성능이 열등하지 않은 것을 확인하였다.
Key Message
Higher RHR is associated with increased risk of diabetes. When RHR is added to the Korean undiagnosed diabetes risk score model (Age, Family history of diabetes, Hypertension, Waist circumference, Smoking, Alcohol consumption), the model somewhat increased its predictability of undiagnosed diabetes. Furthermore, the prediction model developed only using age, waist circumference and RHR, which anyone can easily measure or access, had similar predictability to the previous undiagnosed diabetes risk prediction model. The results of this study may help develop future strategies or applications for predicting early undiagnosed diabetes.
-
Citations
Citations to this article as recorded by
- Comparisons of the prediction models for undiagnosed diabetes between machine learning versus traditional statistical methods
Seong Gyu Choi, Minsuk Oh, Dong–Hyuk Park, Byeongchan Lee, Yong-ho Lee, Sun Ha Jee, Justin Y. Jeon Scientific Reports.2023;[Epub] CrossRef - Factors related to undiagnosed diabetes in Korean adults: a secondary data analysis
Bohyun Kim Journal of Korean Biological Nursing Science.2023; 25(4): 295. CrossRef
|